Thermolysis and Co^{11}-tetraphenylporphyrin-catalysed decomposition of substituted cycloheptatriene endoperoxides: a new synthetic approach to substituted dihydrooxepines

M . E min Sengül and M etin Balci*
C hemistry D epartment, A tatürk U niversity, E rzurum, 25240, T urkey

Abstract

Photooxygenation of the carbonyl group-substituted cycloheptatrienes 14-17 affords the corresponding [$2+4$] cycloaddition products derived from cycloheptatriene and its valence isomer norcaradiene as well as rearranged aromatic compounds. Thermolysis of the cycloheptatriene endoperoxides 19, 22, 23, 26, 27 and 31 at $174{ }^{\circ} \mathrm{C}$ gives the corresponding bis-epoxides, no rearranged products being observed. H owever, treatment of 19, 26 and 31 with cobalt tetraphenylporphyrin provides the ring-opened products 47,49 and 51 which are easily converted into the substituted 4,5 -dihydrooxepine derivatives 48,50 and 52 . The outcome of Co -TPP-catalysed rearrangement is discussed in terms of different conformers.

The reaction of 1,3 -cyclic dienes with singlet oxygen is the most general and frequently used route to bicyclic endoperoxides. Thermolysis of unsaturated bicyclic endoperoxides gives cis-bisepoxides and epoxy ketones ${ }^{1}$ (Scheme 1). The formation of the

cis-epoxide $\mathbf{2}$ is readily rationalized in terms of homolytic fission of the peroxide bond in $\mathbf{1}$ to form a diradical, followed by intramolecular addition to the adjacent double bond. ${ }^{1}$ Carless et al. ${ }^{2}$ suggested that the 1,3 -diradicals formed by closure of the first epoxide can rearrange by a hydrogen shift to an enol and ultimately tautomerize to the ketone 3.

In cases where endoperoxides gain significant resonance stabilization, a carbon-oxygen bond can also be cleaved. Thus, certain arene endoperoxides when heated generate singlet oxygen and the corresponding aromatic compounds. ${ }^{3}$

A third way for endoperoxide thermolysis to occur is by C-C cleavage; this is observed only in smaller ring systems. Thermolysis of 2,3-dioxabicyclo[2.2.1]hept-5-ene 6 occurs by a novel $\mathrm{C}-\mathrm{C}$ bond cleavage not observed in its larger bicyclic homologues. ${ }^{4}$

Recently, we described an example of carbon-oxygen bond cleavage of endoperoxides at higher temperatures where aromatic systems cannot be formed. ${ }^{5}$

The endoperoxides $\mathbf{1 0 - 1 2}$ derived from the photooxygenation of 9 were subjected to thermolysis. ${ }^{5}$ To our surprise the bis-epoxide $\mathbf{1 3}$ was formed from the thermolysis of all three endoperoxides $\mathbf{1 0 - 1 2}$ in addition to the expected bisepoxides (Scheme 2). For the formation of bis-epoxide 13 we

postulated the following reaction mechanism involving decomposition by two different pathways: (a) cleavage of the oxygenoxygen bond which leads to the corresponding bis-epoxides by addition of the resulting oxygen radicals to an adjacent double bond and (b) cleavage of the carbon-oxygen bond as depicted in Scheme 2.
We assumed that the driving force for cleavage of carbonoxygen bonds is the formation of the oxygen and carbon diradicals 10a and 11a which can be stabilized by the conjugated vinyl and carbonyl groups. In order to test the generality of this new endoperoxide-endoperoxide rearrangement we

14

15

16

17
have synthesized seven cycloheptatriene endoperoxides derived from carbonyl group-substituted cycloheptatrienes 14-17 and investigated their thermolysis reactions.

Furthermore, we were also interested in CoTPP-catalysed decomposition of the endoperoxides formed in view of the synthesis of substituted 4,5-dihydrooxepine derivatives which are subunits of many biologically active compounds. ${ }^{6}$

Results and discussion

We first investigated the photooxygenation of the substituted cycloheptatrienes $14-17$ in CCl_{4} at $10^{\circ} \mathrm{C}$ with tetraphenylporphyrin (TPP) as a sensitizer (Scheme 3). In our early work

Scheme 3
we showed that singlet oxygen can add to cycloheptatriene and its derivatives to form $[2+4]$ adducts derived from cycloheptatriene and its valence isomer norcaradiene. ${ }^{7}{ }^{1} \mathrm{H}$ NMR Spectra of the crude materials showed that the endoperoxides
were formed in addition to aromatic aldehydes. Careful silica gel chromatography of the mixture formed after photooxygenation of $\mathbf{1 4}$ and $\mathbf{1 5}$ provided two bicyclic endoperoxides 18/19 and 22/23, methyl benzoate (acetophenone) and some aromatic aldehydes $\mathbf{2 1 / 2 5}$. In contrast, photooxygenation of 16 and $\mathbf{1 7}$ formed norcaradiene endoperoxides $\mathbf{2 8}$ and 32 , respectively, as well as the expected cycloheptatriene endoperoxides 26 , 27 and 31 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra have been definitive in assigning the proposed structures of the endoperoxides after using double resonance and NOE experiments.
It has already been shown that π-acceptor substituents (CN, $\mathrm{CHO}, \mathrm{COMe}$ and $\mathrm{CO}_{2} \mathrm{Me}$, can stabilize the norcaradiene structure by strengthening the distal cyclopropane bond. ${ }^{8}$ In contrast, these substituents also destabilize the vicinal bonds in cyclopropane which is initially formed at an early stage in the cycloheptatriene-norcaradiene rearrangement so that system 33 reverts to cycloheptatriene. In the case of 2 - and 3substituted cycloheptatrienes, however, the destabilizing effect of the carbonyl group on the formation of the norcaradiene isomers $\mathbf{3 4}$ and $\mathbf{3 5}$ is absent. Because of this, only $\mathbf{1 6}$ and 17 can provide norcaradiene adducts which is in agreement with experimental results.

Since the cycloheptatrienes $\mathbf{1 4 - 1 7}$ have no symmetry, singlet oxygen can add to two different diene units. For compounds 14-16 we isolated two isomeric cycloheptatriene adducts although $\mathbf{1 7}$ provided only one, 31, the second isomer 36 not being formed. In order to rationalize this outcome we have carried out AM 1 calculations. ${ }^{9}$
The optimized geometries of isomers 31 and 36 (F ig. 1) were calculated by the A M 1 method. Results from A M 1 calculations (Table 1) show that the isomer 31 has a $12.5 \mathrm{kcal} \mathrm{mol}^{-1}$ Iower heat of formation ($-54.03 \mathrm{kcal} \mathrm{mol}^{-1}$) than the unformed isomer $36\left(-41.55 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The large energy gap between the two possible isomers indicates that the more thermodynamically stable isomer was formed by photooxygenation.
For the formation of the aromatic aldehydes, the dioxetanes are proposed as precursors. Low-temperature studies ${ }^{10}$ have revealed that a 1,2-dioxetane is the precursor for the formation of benzaldehyde by photooxygenation of cycloheptatriene, while dioxetanes can easily undergo thermal cleavage to give dialdehydes. Since the methylene protons in 38 are activated by both a carbonyl group and doublebond, 38 can readily undergo condensation to givesubstituted aromatic aldehydes (Scheme4).
The next phase of this investigation was to probe the response of isolated bicyclic endoperoxides (18, 19, 22, 23, $26,27,31$) to thermolysis. For this purpose, the endoperoxides dissolved in toluene were pyrolysed at $174^{\circ} \mathrm{C}$ in a sealed tube The thermal stability of endoperoxides is quite high and in all cases the corresponding bis-epoxides were the only products (Scheme 5). In the case of the acetyl compound 18 no product could be isolated, behaviour which can be attributed to the existence of carbonyl group activated methyl protons which can easily be attacked by oxygen radicals to cause ultimately the polymerization.
Careful examination of the thermolysis products failed to reveal any sign either of epoxy ketone formation or other rearranged products. This behaviour seems to be best explained by the fact that the carbonyl group has no effect on the outcome of the reaction as in cases $\mathbf{1 0 - 1 2}$. This is because substituents such as COM e and $\mathrm{CO}_{2} \mathrm{M}$ e have free rotation, whereas, for the stabilization of any radical intermediates like 10a or 11a it is

15-16

25/29

37

38

Scheme 4
very important that the carbonyl group has a rigid conformation, as in 9 , in order to achieve a maximum conjugation with the radical species formed. On the basis of this observation, we postulate that the geometry of the carbonyl group plays an important role by promoting carbon-oxygen cleavage in bicyclic endoperoxides.

Next, we turned our attention to the CoTPP-catalysed rearrangement of these endoperoxides. A wide variety of metalinduced decompositions of endoperoxides, by different reaction mechanisms, has been examined. ${ }^{11}$ Foote et al. ${ }^{12}$ reported that cobalt meso-tetraphenylporphyrin (CoTPP) promoted catalytic rearrangement of endoperoxides to bis-epoxides. We successfully applied this reaction to unsaturated bicyclic endoperoxides

31 AM1 Geometry optimization $\operatorname{Rel} E=0 \mathrm{kcal} \mathrm{mol}^{-1}$

36 AM1 Geometry
optimization
$\operatorname{Rel} E=12.5 \mathrm{kcal} \mathrm{mol}^{-1}$

Fig. 1 Uptımızed geometrıes tor the two ısomers 31 and 36
Table 1 Results from A M 1 calculations

Substrate	$\Delta \mathrm{H}_{\mathrm{f}} / \mathrm{kcal} \mathrm{mol}^{-1}$
$\mathbf{1 8}$	1.147
19	-7.975
$\mathbf{2 2}$	-45.756
$\mathbf{2 3}$	-47.08
$\mathbf{2 6}$	-54.97
$\mathbf{2 7}$	-54.15
31	-54.03
$\mathbf{3 6}$	-41.55

41

31
Scheme 5
with strained and perturbed diene moieties and found that CoTPP-catalysed reactions suppress the side reactions such as formation of epoxy ketones. ${ }^{13} \mathrm{H}$ owever, the reaction of cycloheptatriene $[2+4]$ endoperoxide 45 with Co-TPP provided ring-opened aldehydes which could be easily converted into the 4,5-dihydrooxepine derivative 46.

A fter discovery of the oxepine nucleus in a number of biologically active natural products, considerable attention has been focused on the construction of medium-sized ring ethers containing these substructures. ${ }^{6,14} \mathrm{~A}$ small number of ingenious routes to these ethers have been described. One potentially attractive approach is the Cope rearrangement of divinyl epoxides, which leads to 4,5-dihydroxepines through fourcarbon ring expansion of the epoxide ${ }^{13,15}$ CoTPP-catalysed decomposition of the endoperoxides derived from substituted cycloheptatrienes provides a useful route to unsymmetrically substituted 4,5-dihydrooxepine derivatives.

Scheme 6

The reaction of the endoperoxides 22, 23 and 27 with a catalytic amount of CoTPP (at $0^{\circ} \mathrm{C}$) resulted mainly in the formation of the corresponding bis-epoxides 41, 40 and 43 with endoperoxide 18 undergoing polymerization as in the case of the thermolysis. H owever, the endoperoxides 19, 26 and 31 afforded divinyl epoxides 47, 49 and 51 in yields of 20-30\%. All compounds have been characterized by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectral data. U nequivocal configurational evidence, especially at the epoxide ring, was made by means of chemical reactions. The isolated open-chain aldehydes 47, 49 and 51 contain 1,2divinyl ethylene oxide units that are suitable species for the Cope rearrangement. Therefore, the key step to convert the divinyl epoxides 47, 49 and 51 into the corresponding dihydrooxepine derivatives $\mathbf{4 8}, \mathbf{5 0}$ and $\mathbf{5 2}$ was [3.3] sigmatropic rearrangement which was easily completed in 1 h at $45^{\circ} \mathrm{C}$. On the basis of this reaction a cis-configuration at the epoxide ring was established. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra of the formed substituted dihydroxepines 48,50 and $\mathbf{5 2}$ exhibited the characteristic resonances of $\mathrm{H}-5$ protons resonating at higher field than the other olefinic protons. Other resonances were also in agreement with the proposed structures.
In our early work, ${ }^{14}$ we suggested a one-electron radical process for the decomposition mechanism which has been supported by the observation of β-cleavage during the COTPPcatalysed decompositions of endoperoxides. We assume that conformational factors in the seven-membered ring, formed

$\operatorname{Rel} E=0 \mathrm{kcal} \mathrm{mol}^{-1}$

Open-chain aldehyde
$\operatorname{Rel} E=4.0 \mathrm{kcal} \mathrm{mol}^{-1}$
Fig. 2 Two stable conformers derived from cleavage of the cycloheptatriene endoperoxide 45 and their M M 2 relative energies
after cleavage of the oxygen-oxygen bond in the endoperoxides by an electron transfer mechanism, play an important role in determining the product distribution. The intermediates formed by cleavage of the peroxide linkage can adopt different conformations as shown in Fig. 2. The nearly parallel arrangement of the $\mathrm{C}-\mathrm{O}$ bonds with the adjacent p orbital lobes is necessary for epoxide formation. If the intermediates can adopt the second conformation which has higher energy than the first one, a synchronous cleavage of the ring $\mathrm{C}-\mathrm{C}$ bond can take place This conformation holds the correct alignment of the $\mathrm{C}-\mathrm{O}$ bond and p orbital for the formation of the epoxide ring. We assume that substituents are responsible for the formation of different conformers which would determine the product distribution.
In summary, we have synthesized seven different substituted cycloheptatriene endoperoxides and thermolysed each. In each case we isolated only the corresponding bis-epoxides, there being no indication of ring cleavage or the preferred carbonoxygen cleavage as observed for 10-12. We assume that ester or acetyl carbonyl groups bonded to a cycloheptatriene system exert no stabilizing effects on the radicals which may beformed upon carbon-oxygen bond cleavage. The rigid geometry of the carbonyl group is most likely required to promote carbonoxygen cleavage. Furthermore, we have developed an efficient 3-4 step synthesis of 4,5-dihydrooxepines that features the Cope rearrangement of cis-1,2-divinyl epoxides. This method provides sufficient flexibility to allow the incorporation of a variety of substituents into 4,5 -dihydrooxepine rings by utilization of various cycloheptatrienes.

Experimental

General details

M ps were determined on a Thomas-H oover capillary melting point apparatus. IR spectra were obtained from films on NaCl plates for liquid or K Br pellets for solids on a Perkin-Elmer 337 IR recording spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N M R$ spectra were recorded on $200(50 \mathrm{M} \mathrm{Hz})$ Varian spectrometers, and are reported in δ units with SiM_{4} as internal standard. All column chromatography was performed on silica gel (60 mesh, M erck).
The substituted cycloheptatrienes $\mathbf{1 4 - 1 7}$ were synthesized as reported in the literature.

1-A cetylcyclohepta-1,3,5-triene 14^{16}

$\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.06$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9,2-\mathrm{H}$), 6.7 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{A}$-part of AB-system, J 11.0 and $5.5,4-\mathrm{H}$), 6.7
(1 H, dd, B-part of AB-system, J 11.0 and $5.9,3-\mathrm{H}$), 6.21 (1 H , dd, A-part of A B-system, J 9.4 and $5.4,5-\mathrm{H}$), 5.5 (1 H , dt, B-part of A B-system, J 9.4 and $7.0,6-H$), 2.3 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0$, 7-H) and $2.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$ 197.21, 136.14, 133.15, 132.26, 129.38, 127.82, 126.52, 26.39 and 25.82 .

M ethyl cyclohepta-1,3,5-triene-1-carboxylate 15

$\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9,2-\mathrm{H}), 6.70(1 \mathrm{H}$, dd, A -part of A B-system, J 11.0 and 5.4, 4-H) 6.58 (1 H , dd, B-part of A B-system, J 11.0 and 5.9, 3-H), 6.2 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{A}$-part of AB-system, J 9.4 and $5.4,5-\mathrm{H}$), 5.5 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{B}$-part of AB-system, J 9.4 and $7.0, \mathrm{H}-6), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and 2.6 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0,7-\mathrm{H}$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right.$) 167.24, 135.21 , $133.45,129.16,127.08,124.52,122.26,52.32$ and 27.16.

M ethyl cyclohepta-1,3,5-triene-2-carboxylate 16^{17}

$\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 7.17$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{A}$-part of AB system, J 11.2, 3-H), 6.74 (1 H , dd, B-part of A B-system, J 11.2 and $5.5,4-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2,1-\mathrm{H}), 6.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{A}-\mathrm{part}$ of AB-system, J 9.5 and $5.5,5-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{dt}, \mathrm{B}$-part of A B-system, J 9.5 and $7.1,6-\mathrm{C}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $2.3(1$ $\mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,7-\mathrm{C}$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right.$) 167.22, 132.52 , $130.38,130.02,128.65,128.06,121.24,52.33$ and 28.18 .

M ethyl cyclohepta-1,3,5-triene-3-carboxylate 17^{17}

$\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8,4-\mathrm{H})$, (1 H , d, A-part of AB-system, J 9.4, 2-H), 6.34 (1 H, dd, A-part of A B-system, J 9.6 and $5.8,5-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{dt}, \mathrm{B}$-part of AB-system, J 9.6 and $7.0,6-\mathrm{H}), 6.43$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{B}$-part of A B-system, J 9.4 and $7.1,1-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $2.26(1$ $\mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,7-\mathrm{H}$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 168.22,137.13$, $133.64,127.32,126.41,126.02,121.23,53.36$ and 28.27 .

General procedure for the photooxygenation of the substituted cyclohepta-1,3,5-trienes 14-17
A CCl_{4} solution ($250 \mathrm{~cm}^{3}$) of each of the substituted cycloheptatrienes 14-17 (5-10 g) and tetraphenylporphyrin (50 mg) was irradiated with a projector Iamp (150 W) while a slow stream of dry oxygen was passed through it continuously. The progress of the photooxygenation was monitored by ${ }^{1} \mathrm{H} N \mathrm{~N}_{\mathrm{R}}$ spectroscopy until essentially complete consumption of the starting material (12-48 h). The solvent was roto-evaporated at room temperature. Chromatography of the crude products on silica gel ($80-110 \mathrm{~g}$) with ethyl acetate-light petroleum (bp 40$\left.65^{\circ} \mathrm{C}\right)(1: 9)$ as the eluent yielded the bicyclic endoperoxides and aromatic compounds.

Photooxygenation of 14

This compound ($3.5 \mathrm{~g}, 23 \mathrm{mmol}$) was treated as described above to give the following compounds: (1) compound 20 (400 $\mathrm{mg}, 13 \%$), (2) compound 21 ($510 \mathrm{mg}, 14.7 \%$), (3) compound 19 ($450 \mathrm{mg}, 11.7 \%$, pale yellow oil) and (4) compound 18 (230 mg , 6%, colourless oil).

3-A cetyl-6,7-dioxabicyclo[3.2.2]nona-2,8-diene 19. $\delta_{\mathrm{H}}(200$ M Hz, CDCl ${ }_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) 7.09 (1 H , dd, J 7.1 and 1.8, 2-H), 6.67 (1 $\mathrm{H}, \mathrm{br} \mathrm{d}, 8-\mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{brd}, 9-\mathrm{H}), 4.85(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{C}$ and $5-\mathrm{C})$, 2.95 (1 H , ddd, A -part of A B-system, J 19.5, 5.0 and 1.8, 4-H), 2.62 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{B}$-part of AB-system, J 19.5 and $6,4-\mathrm{H}$) and 2.3 (3 H, s, CH 3); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$ 198.24, 141.21, 139.64, 132.49, 128.53, 75.62, 72.74 and $34.22 ; v_{\text {max }}\left(\mathrm{NaCl}^{2} / \mathrm{cm}^{-1}\right.$ 2970, 1705, 1430 and 1260 (Found: C, 65.3; H, 6.2. C ${ }_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ requires $\mathrm{C}, 65.05 ; \mathrm{H}, 6.1 \%$).
1-A cetyl-6,7-dioxabicyclo[3.2.2]nona-3,8-diene 18. $\delta_{\mathrm{H}}(200$ M Hz, CDCl ${ }_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) 6.67 (1-H, dd, J 9.4 and 7.0, 9-H), 6.38 (1 H, d, J 9.4, 8-H), 6.05 ($1 \mathrm{H}, \mathrm{ddt}, 4-\mathrm{C}$), $5.65(1 \mathrm{H}, \mathrm{dt}, 3-\mathrm{H}), 4.67$ (t, J $7.0,5-\mathrm{H}), 2.7(1 \mathrm{H}$, ddd, A -part of A B-system, J $19.0,4.1$ and 2.0, 2-H), 2.62 (1 H , ddd, B-part of A B-system, J 19.0, 4.0 and 2.1, $2-\mathrm{H}$) and $2.4\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 185.93,136.14,130.87,127.32,125.26,87.21,73.44$,
38.22 and 25.94; $v_{\text {max }}\left(\mathrm{NaCl}^{2} / \mathrm{cm}^{-1} 3040,3000,2970,1750,1450\right.$, 1280, 1430 and 1260 (Found: $\mathrm{C}, 65.4 ; \mathrm{H}, 6.0 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C, 65.05; H, 6.1\%).

Photooxygenation of 15

This compound ($5.0 \mathrm{~g}, 33 \mathrm{mmol}$) was treated as described above to give the following compounds: (1) compound 24 (700 mg , 13%), (2) compound $\mathbf{2 5}$ ($230 \mathrm{mg}, 5.5 \%$), (3) compound 23 (760 $\mathrm{mg}, 11.1 \%$, pale yellow crystals $\mathrm{mp} 57-58^{\circ} \mathrm{C}$ from diethyl etherhexane) and (4) compound 22 ($450 \mathrm{mg}, 8.3 \%$, colourless oil).
M ethyl 6,7-dioxabicyclo[3.2.2]nona-2,8-diene-3-carboxylate 23. $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.23(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 7.0$ and 2.0 , 2-H), $6.70(1 \mathrm{H}, \mathrm{t}, 8-\mathrm{H}), 6.42(1 \mathrm{H}, \mathrm{t}, 9-\mathrm{H}), 4.85(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $5-\mathrm{H}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), $3.18(1 \mathrm{H}$, ddd, A-part of A B-system, J 19.5, 5.0 and 2.1, 4-H) and $2.69(1 \mathrm{H}, \mathrm{dt}, \mathrm{B}$-part of A B-system, J 19.5, 2.1, 4-C); $\delta_{c}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right.$) $167.62,139.14,135.57,133.02,127.84,75.54,72.55,52.43$ and 35.51; $v_{\max }\left(\mathrm{NaCl}^{2} / \mathrm{cm}^{-1} 3040,3000,2970,1705,1430\right.$ and 1260 (Found: C, 59.7; $\mathrm{H}, 5.7 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 5.5 \%$).
M ethyl 6,7-dioxabicyclo[3.2.2]nona-3,8-diene-1-carboxylate 22. $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 6.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.4$ and 7.0 , 9-H), 6.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.4,8-\mathrm{H}$), $6.10(1 \mathrm{H}, \mathrm{ddt}, 4-\mathrm{H}), 5.70(1 \mathrm{H}$, $\mathrm{dt}, 3-\mathrm{H}), 4.70(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,5-\mathrm{H}), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $3.0(1 \mathrm{H}$, ddd, A -part of A B-system, J 19.0, 4.1 and 2.0, 2-H) and 2.60 (1 H, ddd, B-part of A B-system, J 19.0, 3.9 and 2.1, 2-H); $\delta_{\mathrm{c}}(50$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) 169.87, 135.53, 130.52, 127.24, 124.86, 82.12, 74.52, 53.67 and $39.22 ; v_{\max }\left(\mathrm{N} \mathrm{aCl}^{2} / \mathrm{cm}^{-1} 3040,3000\right.$, 2970, 1705, 1425, 1275, 1420 and 1250 (Found: C, 59.5; H , 5.55. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 59.3 ; \mathrm{H}, 5.5 \%\right)$.

Photooxygenation of 16

This compound ($10.0 \mathrm{~g}, 67 \mathrm{mmol}$) was treated as described above. A fter completion of the reaction, the resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 1 h in order to transform 28 into the corresponding norcaradiene bis-epoxide 53 which can be easily separated.
The following compounds were isolated: (1) Compound 24 ($1300 \mathrm{mg}, 14.3 \%$), (2) compound 26 ($1200 \mathrm{mg}, 10.0 \%$, colourless liquid), (3) compound 27 ($1400 \mathrm{mg}, 11.7 \%$, colourless liquid), (4) compound 29 ($800 \mathrm{mg}, 7.4 \%$, colourless oil), (5) compound 30 ($610 \mathrm{mg}, 5.1 \%$, colourless oil) and (6) compound 53 ($900 \mathrm{mg}, 7.5 \%$, colourless oil).
M ethyl 6,7-dioxabicyclo[3.2.2]nona-2,8-diene-2-carboxylate 26. $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 6.94(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.77(1 \mathrm{H}$, ddd, A -part of A B-system, J 10.2, 7.5 and 1.3, 8-H), 6.41 (1 H, ddd, B-part of A B-system, J 10.2, 7.4 and 1.2, 9-H), $5.50(1 \mathrm{H}$, d, J 7.5, 1-H), $4.80(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 3.10 (1 H , ddd, A part of A B-system, J 20.6, 4.8 and 4.1, 2-H) and 2.55 (1 H , ddd, B-part of A B-system, J 20.6, 4.0 and 2.1, 2-C); $\delta_{\mathrm{c}}(50$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) 166.23, 142.21, 134.51, 134.89, 126.72 , 75.11, 73.22, 52.74 and $36.13 ; v_{\text {max }}\left(\mathrm{NaCl}^{2} / \mathrm{cm}^{-1} 3040,3000\right.$, 2970, 1705, 1430 and 1260 (Found: C, 59.0; H, 5.3. C ${ }_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 5.5 \%)$.

M ethyl 6,7-dioxabicyclo[3.2.2]nona-2,8-diene-2-carboxylate 27. $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 7.63(1 \mathrm{H}, \mathrm{d}, 8-\mathrm{H}), 6.1(1 \mathrm{H}, \mathrm{m}$, 2-H), $5.71(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{t}, 1-\mathrm{H})$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), $2.94(1 \mathrm{H}$, dddd, A -part of A B-system, $2-\mathrm{H})$ and $2.42\left(1 \mathrm{H}\right.$, ddd, B-part of AB-system 2-H); $\delta_{\mathrm{c}}(50$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) $164.56,142.21,132.84,129.65,128.11$, $75.44,73.08,52.66$ and $35.83 ; v_{\max }\left(\mathrm{NaCl}^{2} / \mathrm{cm}^{-1} 3040,3000\right.$, 2970, 1705, 1430 and 1260 (Found: C, 59.6; H, 5.8. C ${ }_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3$; $\mathrm{H}, 5.5 \%)$.

3-H ydroxy-4-methoxycarbonylbenzaldehyde 30. $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 10.9(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 10.0(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.05(1 \mathrm{H}$, d, J $8.1,5-\mathrm{H}$), 7.43 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1$ and 1.46, 6-H), $7.41(1 \mathrm{H}, \mathrm{d}$, J $1.46,2-\mathrm{H})$ and $3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) $192.12,170.12,162.12,143.43,131.27,121.24,120.12$, 119.26 and 52.39 .
(1 $1 \beta, 2 \alpha, 4 \alpha, 5 \alpha, 7 \alpha, 8 \beta)$-M ethyl $\quad 3,6$-dioxatetracyclo[6.1.0.0 ${ }^{2.4}$. 05.7] nonane-2-carboxylate 53. $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 3.77$
($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $3.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 3.24(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{H}$ and $7-\mathrm{H}), 1.54(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $8-\mathrm{H}), 1.18(1 \mathrm{H}, \mathrm{dt}, 9-\mathrm{H})$ and 0.62 ($1 \mathrm{H}, \mathrm{q}, 9-\mathrm{H}$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{H} \mathrm{z}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right.$) 164.61, $56.12,55.33$, $54.81,53.35,50.16,48.34,11.58,11.52$ and $8.22 ; v_{\max }(\mathrm{NaCI}) /$ $\mathrm{cm}^{-1} 3040,3010,1710,1430,1270$ and 1210 (Found: C, 59.2; H 5.45. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 5.5 \%$).

Photooxygenation of 17

This compound ($10.0 \mathrm{~g}, 67 \mathrm{mmol}$) was treated as described above. A fter completion of the reaction, the resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 1 h in order to transform 32 to the corresponding 54 which was easily separated.

The following compounds were isolated: (1) Compound $\mathbf{2 4}$ ($1650 \mathrm{mg}, 18.2 \%$), (2) compound 29 ($1.500 \mathrm{mg}, 13.8 \%$, colourless liquid), (3) compound 31 ($1240 \mathrm{mg}, 10.3 \%$, colourless liquid) and (4) compound 54 ($1400 \mathrm{mg}, 11.7 \%$, colourless crystals, $\mathrm{mp} 68-70^{\circ} \mathrm{C}$ from diethyl ether-hexane).

M ethyl 6,7-dioxabicyclo[3.2.2]nona-2,8-diene-8-carboxylate 31. $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 7.23$ (dd, J 7.1, 1.5, H-C 9), 6.10 (ddt, A -part of A B-system, J 10.6, 7.1, 2.1, H-C C_{2}) 5.72 (m, B-part of A B-system, H-C ${ }_{3}$), 5.25 (dq, H-C ${ }_{1}$), 4.96 (ddt, J 7.4, 5.3, 1.6, H-C5), $3.80\left(\mathrm{~s}_{2} \mathrm{CH}_{3}\right), 2.9$ (dddd, A-part of AB-system, J 19.5, 5.6, 3.6, 2.1, H-C ${ }_{4}$) and 2.35 (ddt, B-part of A B-system, J 19.5, 3.6, 1.8, $\mathrm{H}^{2} \mathrm{C}_{4}$); $\delta_{\mathrm{C}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$ 164.53, 138.76, 133.71, 131.62, 128.74, 75.33, 73.12, 52.73 and $35.46 ; v_{\text {max }}{ }^{-}$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3030,3000,2960,1740,1440$ and 1270 (Found: C, 59.05; H , 5.2. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3$; $\mathrm{H}, 5.5 \%$).
($1 \beta, 2 \alpha, 4 \alpha, 5 \alpha, 7 \alpha, 8 \beta)$-M ethyl $\quad 3,6$-dioxatetracyclo[6.1.0.0.4 0 ${ }^{5.7}$]nonane-4-carboxylate 54. $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 3.91$ ($1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 3.58 (1 H, br s, $5-\mathrm{H}$), 3.36 ($1 \mathrm{H}, \mathrm{d}, 7-\mathrm{H}$), $1.65(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $8-\mathrm{H}), 1.10(1 \mathrm{H}, \mathrm{dt}, 9-\mathrm{H})$ and $0.55(1 \mathrm{H}, \mathrm{q}, 9-\mathrm{H}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 165.23$, $56.45,53.42,52.38,50.27,47.73,12.31,11.66$ and 8.47 ; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 300,3010,1710$ and 1210 (Found: C, 59.45; H , 5.15. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3$; $\mathrm{H}, 5.5 \%$).

Thermolysis of the endoperoxides: 18, 19, 22, 23, 26, 27 and 31 A solution of each of the endoperoxides ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$) in toluene (5 ml) sealed in vacuo in a constricted test tube was heated in an oil-bath for 14 h . A fter cooling to room temperature, the mixture was roto-evaporated and the residue analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy to assure complete transformation of the endoperoxide. The thermolysate was submitted to silica gel chromatography with ethyl acetate-hexane ($1: 4$) as eluent. Structural identification was established on the basis of spectral and elemental analysis.
($1 \alpha, 2 \alpha, 4 \alpha, 8 \alpha$)-6-A cetyl-3,9-dioxatricyclo[8.1.0.0 $0^{2,4}$]non-6-ene 39. A colourless oil ($425 \mathrm{mg}, 85 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{E}_{4} \mathrm{Si}\right.$) 6.79 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.4$ and 1.6, 7-H), 3.70 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{A}$-part of AB-system, J 3.9 and $2.4,8-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{t}, \mathrm{B}-\mathrm{part}$ of A B-system, J 3.9, 1-H), 3.4-3.1 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $4-\mathrm{H}$), 3.04 (dt, A -part of A B-system, J 13.8, 5-H), 2.85 (1 H , ddd, B-part of AB-system, J 13.8, 6.5 and 1.6,5-H), 2.60 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$); $\delta_{c}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 198.26,142.27,134.13,53.22,52.85$, 50.17, 48.94, 26.32 and $25.47 ; v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2995,2910$, 1670, 1450 and 1250 (Found: $\mathrm{C}, 65.3 ; \mathrm{H}, 6.2 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C, 65.05; H, 6.1\%).

M ethyl ($1 \alpha, 2 \alpha, 4 \alpha, 8 \alpha)$-3,9-dioxatricyclo[8.1.0.0 ${ }^{2,4}$]non-6-ene6 -carboxylate 40 . Product ($215 \mathrm{mg}, 43 \%$) had $\mathrm{mp} 57-58^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 6.9(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 7-\mathrm{H}), 3.90(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$) and 2.8-3.0 ($6 \mathrm{H}, \mathrm{m}$, epoxide- H and methylene-H); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{H} \mathrm{z}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 166.18,135.23,133.42,53.86,52.94$, $52.87,49.78,48.93$ and $24.66 ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2990,1690,1450$ and 1260 (Found: $\mathrm{C}, 59.4 ; \mathrm{H}, 5.65 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}$, 5.5\%).

M ethyl ($1 \alpha, 2 \alpha, 4 \alpha, 8 \alpha)$-3,9-dioxatricyclo[6.1.0.0 $\left.{ }^{2.4}\right]$ non-6-ene-4-carboxylate 41. Product ($266 \mathrm{mg}, 54 \%$) had $\mathrm{mp} 34-36^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 5.96$ ($1 \mathrm{H}, \mathrm{dt}, \mathrm{A}$-part of AB system, J 10.3 and $6.9,6-\mathrm{H})$, $5.70(1 \mathrm{H}$, ddd, B-part of AB-system, J 10.3, 4.0 and $1.8,7-\mathrm{H}), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$,
3.45-3.7 (2 H, m, 1-H, 2-H and 3-H), 2.94 (1 H , ddd, A-part of AB-system, J 14.5, 6.0 and $1.8,5-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{B}-$ part of AB-system, J $14.5,7.8,5-\mathrm{H}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{M}_{4} \mathrm{Si}\right) 170.88,131.63,124.37,56.49,54.73,54.16,53.31,51.21$ and 25.88; $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3000,3010,2990,2980,1690$ and 1450 (Found: $\mathrm{C}, 59.15 ; \mathrm{H}, 5.7 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3$; H, 5.5\%)
M ethyl ($1 \alpha, 2 \alpha, 4 \alpha, 8 \alpha$)-3,9-dioxatricyclo[6.1.0.0. $\left.{ }^{2.4}\right]$ non-5-ene-5-carboxylate 42. Product ($310 \mathrm{mg}, 62 \%$) had $\mathrm{mp} 88-90^{\circ} \mathrm{C}$ from diethyl ether-hexane (1:1); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M}_{4} \mathrm{Si}\right)$ $6.95(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,6-\mathrm{H}), 4.0(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,4-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 3.6 (dd, J 4.0 and $2.4,2-\mathrm{H}$), $3.27(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.1$ and 2.4, 1-H), 3.08 ($1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}$), $2.92(1 \mathrm{H}, \mathrm{dt}, \mathrm{A}$-part of ABsystem, J 15.5 and $6.8,7-\mathrm{H}$) and 2.70 (1 H , ddd, B-part of A Bsystem, J $15.5,7.1$ and $4.5,7-\mathrm{H}) ; \delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M}_{4} \mathrm{Si}\right)$ 166.24, 140.76, 129.80, 53.55, 52.63,52.17, 50.76, 49.73 and 25.87; $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3000,2990,2980,1695,1405$ and 1230 (Found: C, 59.0; H,5.7. C ${ }_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, 59.3; H , 5.5\%).
M ethyl ($1 \alpha, 2 \alpha, 4 \alpha, 8 \alpha$)-3,9-dioxatricyclo[6.1.0.0.0.4]non-5-ene-1-carboxylate 43. Product ($285 \mathrm{mg}, 57 \%$) had $\mathrm{mp} 79-81^{\circ} \mathrm{C}$ from diethyl ether-hexane (1:1); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$ $5.85(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $6-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,2-\mathrm{H}), 3.81(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 3.58(\mathrm{~m}, 4-\mathrm{H}), 3.35(\mathrm{t}, \mathrm{J} 6.0,8-\mathrm{H}), 2.92(1 \mathrm{H}, \mathrm{m}$, A-part of AB-system, H-7) and 2.60 ($1 \mathrm{H}, \mathrm{m}$, B-part of ABsystem, $\mathrm{H}-7$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 170.14,129.23$, $125.52,56.15,55.20,54.18,53.00,52.12$ and $25.95 ; v_{\text {max }}(\mathrm{NaCl})$ / $\mathrm{cm}^{-1} 3040,2990,2980,1720,1440$ and 1230 (Found: C, 59.2; H, 5.35. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3 ; \mathrm{H}, 5.5 \%$).

M ethyl ($1 \alpha, 2 \alpha, 4 \alpha, 8 \alpha$)-3,9-dioxatricyclo[6.1.0.0. ${ }^{2.4}$ non-6-ene-1-carboxylate 44. Product ($375 \mathrm{mg}, 74 \%$) had $\delta_{\mathbf{H}}(200 \mathrm{M} \mathrm{Hz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{M}_{4} \mathrm{Si}\right) 5.86$ (1 H , dt, A -part of A B-system, J 10.2 and $6.4,6-\mathrm{H}$) , 5.70 (1 H , ddd, B-part of A B-system, J 10.2, 3.6 and 1.6, 7-H), 3.7-3.9 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $8-\mathrm{H}$), $3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), $3.2(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 14.8,6.4$ and $1.6,5-\mathrm{H})$ and 2.55 (1 H , ddd, J 14.8, 7.3 and $5.6,5-\mathrm{H}$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$, $\mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) $170.11,129.88,124.76,56.18,56.05,55.82,54.42,52.56$ and 25.12; $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3040,2990,2980,1715,1440$ and 1240 (Found: $\mathrm{C}, 59.45 ; \mathrm{H}, 5.3 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3$; H , 5.5\%).

G eneral procedure for C OT PP-catalysed reaction of the endo-

 peroxides 18, 19, 22, 23, 26, 27 and 31To a magnetically stirred solution of the endoperoxide (5.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was added a solution of cobalt mesotetraphenylporpyrin ${ }^{18}$ ($50 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. A fter complete addition (15 min), the mixture was stirred for 30 min at room temperature and then roto-evaporated. Low-temperature chromatography of the residue on silica gel ($50-75 \mathrm{~g}$) with ethyl acetate-hexane ($1: 9$) as eluent at $0^{\circ} \mathrm{C}$ yielded the corresponding bis-epoxides or a mixture of epoxides and aldehydes.

G eneral procedure for thermolysis of compounds 47, 49 and 51

A solution of each of the divinyl epoxides in CCl_{4} (5 ml) was heated at $45^{\circ} \mathrm{C}$. The reaction, monitored by ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectroscopy, was complete after 1 h . The conversion of the cisaldehydes 47, 49 and 51 into the corresponding 4,5-dihydrooxepines $\mathbf{4 8}, \mathbf{5 0}$ and $\mathbf{5 2}$ was in quantitative yield.

C OTPP-catalysed reaction of 19

The products were (1) compound 39 ($710 \mathrm{mg}, 71 \%$), (2) compound 47 colourless liquid ($110 \mathrm{mg}, 11 \%$) and (3) compound 48 colourless liquid ($35 \mathrm{mg}, 3.5 \%$).
4,5-cis-E poxy-6-acetylocta-2(Z),6-dienal 47. $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}$, $\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}$) 10.16 ($1 \mathrm{H}, \mathrm{dd}$, J 5.0 and 2.7, CHO), 6.26 (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}), 6.12(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{br}$ s, $7-$ H), $4.36(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 4.5$ and $1.9,4-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{br}$ d, J 1.9 , $5-\mathrm{H}), 2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}) ; \delta_{\mathrm{c}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e} \mathrm{e}_{4} \mathrm{Si}\right)$ 198.16, 192.66, 142.31, 141.43, 135.67, 123.82, 58.24, 54.35 and 24.42.

3-A cetyl-5-formyl-4,5-dihydrooxepine 48. A colourless liquid, $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 9.53(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} 0), 7.55(1 \mathrm{H}, \mathrm{s}$, 2-H), $6.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$ and $1.7,7-\mathrm{H}), 5.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$ and 5.1, 6-H) , 3.30(1 H, m, 5-H), 3.15 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3$ and $2.9,4-\mathrm{H}$), 2.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.3$ and 7.7, 4-H) and 2.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 200.12$, 198.31, 158.53, 142.29, 121.34, 107.28, 49.81, 26.28 and 26.12 (Found: C, 58.95; H, 5.40. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 59.3 ; \mathrm{H}, 5.5 \%\right)$.

C OT PP-catalysed reaction of 26

The products were (1) compound 42 ($325 \mathrm{mg}, 65 \%$) and (2) compound 49 colourless liquid ($125 \mathrm{mg}, 25 \%$).
4,5-cis-E poxy-5-methoxycarbonylocta-2(Z),6-dienal 49. $\delta_{\mathrm{H}^{-}}$ ($200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) $10.15(1 \mathrm{H}, \mathrm{brd}, \mathrm{CHO}), 6.25(3 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{H}, 3-\mathrm{H}$ and $6-\mathrm{H}), 5.51(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H})$ and $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right) ; \delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right)$ 192.18, $166.32,141.33,138.16,136.41,121.18,61.72,58.63$ and 52.24 .
M ethyl 5 -formyl-4,5-dihydrooxepine-2-carboxylate 50 . Colourless liquid $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 9.81(1 \mathrm{H}, \mathrm{d}$, $\mathrm{CHO}), 6.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6,3-\mathrm{H}), 6.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7$ and 1.6 , $7-\mathrm{H}), 5.18$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.6$ and 5.6, 6-H), 3.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 3.37 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.72 (1 H , ddd, A - part of A B-system, J 17.5 , 7.5 and $3.5,4-\mathrm{H})$ and $2.65(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 17.5,6.8,4-\mathrm{H}) ; \delta_{\mathrm{C}}(50$ $\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) 199.75, 163.85, 145.17, 144.52, 119.46, 115.60, 53.80, 50.85 and 26.32 (Found: C, 59.7; H, 5.35. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 59.3 ; \mathrm{H}, 5.5 \%\right)$.

C oTPP-catalysed reaction of 31

The products were (1) compound 44 colourless liquid (310 $\mathrm{mg}, 62 \%$) and (2) compound 51 colourless liquid (151 mg , 30%).
4,5-cis-E poxy-3-methoxycarbonylocta-2(Z),6-dienal 51. $\delta_{\mathrm{H}^{-}}$ ($200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}$) 10.45 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{CH} 0$), 6.74 (1 H , d, J $7.4,2-H), 5.62(2 \mathrm{H}, \mathrm{m}), 5.40(1 \mathrm{H}, \mathrm{m}), 3.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.9$, $4-\mathrm{H}), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M}\right.$ e) and $3.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.4,1.9,5-\mathrm{H})$; $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 192.35,165.88,142.18,136.42$, 134.08, 120.12, 60.87, 58.90 and 52.57.

M ethyl 4-formyl-4,5-dihydrooxepine-3-carboxylate 52. $\delta_{\mathrm{H}}(200$ $\left.\mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 9.51$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHO}$), 7.76 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), $6.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.4$ and $2.4,7-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 7.4$ and 3.7 , $6-\mathrm{H}), 4.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 3.7,4-\mathrm{H}), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 2.65(1 \mathrm{H}$, ddd, A -part of A B-system, J 14.8, 7.4 and 3.7, $5-\mathrm{H}$) and 2.54 ($1 \mathrm{H}, \mathrm{ddt}$, J $14.8,7.4,3.3,5-\mathrm{H}$); $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right.$) 199.55, 168.37, 156.15, 142.44, 109.32, 108.56, 68.17, 52.15 and 25.83 (Found: C, 59.9; $\mathrm{H}, 5.35 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.3$; H , 5.5\%).

A cknowledgements

The authors are indebted to the Department of Chemistry (A tatürk U niversity) for financial support of this work and the State Planning Organization of Turkey (DPT) for purchasing a 200 M Hz spectrometer. A lso, appreciation must be expressed to Professor P. Shevlin for his hospitality at Auburn University where this manuscript was prepared. Furthermore, we thank Dr K atherine Seley for critical reading of this manuscript.

References

1 W. Adam and M. Balci, Tetrahedron, 1980, 36, 833; M. Balci, Chem. Rev., 1981, 81, 91; E. L. Clennan and C. S. Foote, in Organic Peroxides, ed. W. Ando, Wiley, Chichester, 1992, p. 55; A. J. Bloodworth, H. J. Eggelte, in Singlet O xygen O_{2} Volume II Reaction M odes and Products Part 1, ed. A. A. Frimer, CRC Press, Boca R aton, F lorida, 1985, p. 93.
2 H. A. J. Carless, R. Atkins and G. K. Fekarurhobo, Tetrahedron Lett., 1985, 26, 803.
3 C. J. M. van den Heuvel, A . H ofland and T. J. de Boer, Recl. Trav. Chim. Pays-B as, 1977, 96, 157; C. J. M . van den H euvel, A. H ofland, H. Steiberg and T. J. de Boer, Recl. Trav. Chim. Pays-B as, 1980, 99, 275; M . Schaefer-R idder, U. Brocker and E. Vogel, A ngew. Chem., Int. Ed. Engl., 1976, 15, 228; P. F. Southern and W. A. Waters, J. Chem. Soc., 1960, 4340; J. Rigaudy and D. Spartel, Tetrahedron, 1978, 34, 2263; J. Rigaudy, J. Barenne-Lafont, A. D efoin and N. K. Cuong, Tetrahedron, 1978, 34, 73.

4 K . H. Schulte-Elte, B. Willhalm and G. Ohloff, A ngew. Chem., Int. Ed. Engl., 1969, 8, 985; W. A dam and D. J. Trecker, Tetrahedron, 1971, 27, 2631
5 N. A kbulut, A. M enzek and M. Balci, Tetrahedron Lett., 1987, 28, 1689; N. A kbulut, A. M enzek and M. Balci, Turk. J. Chem., 1991, 15, 232.
6 D. Faulkner, J. N at. Prod. Rep., 1988, 5, 613.
7 W. Adam and M. Balci, J. Am. Chem. Soc., 1979, 101, 7537; W. A dam and M. Balci, J. Am. Chem. Soc., 1979, 101, 7542; W. A dam, M . Balci and B. Pietrzak, J. Am. Chem. Soc., 1979, 101, 6285; B. A tasoy and M. Balci, Tetrahedron, 1986, 42, 1461.
$8 \mathrm{H} . \mathrm{G}$ unther, Tetrahedron Lett., 1970, 5173; R. Hoffmann, Tetrahedron Lett., 1970, 5173; For a review see: M. Balci, Turk. J. Chem., 1992, 16, 42.

9 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. A m. Chem. Soc., 1985, 107, 3902.

10 W. A dam and H. Rebollo, Tetrahedron Lett., 1981, 22, 3049.
11 S. Yamada, K. Nakayama, H. Takayama, A. Itai and Y. Iataka, J. Org. C hem., 1983, 48, 3477.

12 J. D. Boyd, C. S. Foote and D. K. Imagawa, J. Am. Chem. Soc., 1980, 102, 6773.
13 M . Balci and Y. Sutbeyaz, Tetrahedron Lett., 1983, 24, 311; M . Balci and Y. Sutbeyaz, Tetrahedron Lett., 1983, 24, 4135; Y. Sutbeyaz, H. Secen and M. B alci, J. Org. Chem., 1988, 53, 2312.

14 Y. Y. Lin, M. Risk, M. S. Ray, D. Van Engen, J. Clardy, J. G olik, J. C. James and K . N akanishi, J. A m. C hem. Soc., 1981, 103, 6773; Y. Shimizu, H.-N. Chou, H. Bando, G. Van Duyen and J. Clardy, J. A m. Chem. Soc., 1986, 108, 514; R . E. M oore, in M arine N atural Products: Chemical and Biological Perspectives, ed. P. J. Scheur, A cademic Press, N ew York, 1978, vol. 1.
15 R . K. Boeckmann, M . D. Shair, J. R . Vargas and L. A. Stolz, J. Org. Chem., 1993, 58, 1295; B. L. Clark, W. N. Chou and J. B. White, J. Org. Chem., 1990, 55, 3975; E. Vogel and H. Gunther, A ngew. C hem., Int. Ed. Engl., 1967, 6, 385
16 J. A. Blair and C. J. Tate, J. C hem. Soc., C , 1971, 1592.
17 K. Takahashi, T. Suzuki, H. Toda, K. Takase, S. K oski and T. N akajima, J. Org. C hem., 1987, 52, 2666.

18 P. Rothemund and A. R. Menotti, J. Am. Chem. Soc., 1979, 101, 753.

Paper 7/01105I
Received 17th February 1997
A ccepted 10th A pril 1997

